Repository logo
  • English
  • 中文
  • Log In
    Have you forgotten your password?
Repository logo
    Communities & Collections
    Research Outputs
    Fundings & Projects
    People
    Organizations
    Statistics
  • English
  • 中文
  • Log In
    Have you forgotten your password?
  1. Home
  2. 設計學院
  3. 多媒體設計系
  4. 多媒體設計系研究成果
  5. 人臉擴增實境虛實影像效果愉悅性研究
 
  • Details
Options

人臉擴增實境虛實影像效果愉悅性研究

Other Title
The Pleasurability and Attraction of Facial Augmented Reality Virtual Images
Date Issued
2021-01-22
Author(s)
邱奕龍
多媒體設計系  
Advisor
蔡子瑋
URI
https://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0061-0102202118382800
https://nutcir-lib.nutc.edu.tw/handle/123456789/685
Abstract
隨擴增實境技術發展,其應用領域愈加廣泛,再加上行動裝置的普及,越來越多的應用程式結合擴增實境技術進行開發,如透過擴增實境技術結合人臉辨識的照相應用程式,或是應用於醫療、遊戲、教育等方面,甚至應用於商業方面,人臉擴增實境虛實影像更使用於為品牌、活動或企業形象作為宣傳媒體,提昇知名度。因此,人臉擴增實境虛實影像的愉悅性效果如何達成?如何引起使用者愉悅的感受?在擴增實境逐漸廣泛應用之際,是值得研究的議題,因此本研究目的在於探討人臉擴增實境虛實影像效果愉悅性。
本研究以感性工學研究方法,首先以文獻探討彙整人臉擴增實境虛實影像樣本設計要素類目及常用形容詞彙;在各應用程式中挑選最受歡迎的人臉擴增實境虛實影像,經焦點小組進行風格分類並挑選代表性樣本。後續邀集受測者使用語意差別法問卷針對實驗樣本進行感性評價調查,以敘述統計進行各風格的情緒感受分析。此外,為了解不同受測者群體之間的差異,使用ANOVA變異數分析得知,年齡與接觸相關應用程式的經驗會影響心理感受。數量化一類複回歸分析方法結果得出設計元素與感受之間的關係並以原型製作進行驗證。本研究共開發2款實驗原型驗證設計元素與感受之間的關係,研究結論提出影響心理感受的人臉擴增實境虛實影像之設計元素共6點:三維立體、跳脫現實且特殊的呈現、高明亮度、無互動、自動循環播放動畫、膚質美化。並提出人臉擴增實境虛實影像設計原則提供後續研究及設計者參考。
Since the development of virtural reality and mobile technology, augmented reality (AR) has been applied to extensive fields such as face recognition camera, medical training, games, education, etc. Facial AR virtural images are also much used to develop social filter games to promote brands or business image. However, it is the issue that facial AR virtural images how to achieve the pleasurability and how to arouse users’ pleasant feelings? Thus, the aim of the research is to explore the pleasurability and attraction of facial augmented reality virtural images.
Kaisei Engineering method is mainly used. First, explore specific adjectives from literature reviews about the attractiveness of facial AR virtural images. Then, focus group classified and selected representative samples from the facial AR virtural images collections; moreover, discuss the decisive design elements. The recruited participants respond their emotion to the samples on the sematic differential measurements. Next, statistically analyze ths collected respondent data. ANOVA analysis result shows that one’s age and usage experience significantly effect on the emotional response to facial AR virtural images. The results of Quantification theory type-I analysis lead the relationships between one’s emotional reponse and the virtual images design elemants. Finally, use the two developed prototypes to verify the result model. Conclude that the design factors of facial AR virtual images comprise three-dimensional shape, surreal and special image, high tones, none-interaction, loop animation, and skin beautification, etc. The provided some design suggestion of the facial AR virtural images should be the reference for the future research.
Subjects
人臉擴增實境
感性工學
數量化一類複回歸分析
虛實影像效果
Facial Augmented Reality
Kaisei Engineering
Quantification theory type-I
Virtual Images
Type
master thesis

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback